От чего зависит период полураспада. Как рассчитать период полураспада

Материал из Википедии - свободной энциклопедии

Пери́од полураспа́да квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) - время T_{1/2}, в течение которого система распадается в примерном отношении 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T_{1/2} останется четверть от начального числа частиц, за 3T_{1/2} - одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

\frac{N(t)}{N_0} \approx p(t) = 2^ {-t/T_{1/2}} .

Период полураспада, среднее время жизни \tau и постоянная распада \lambda связаны следующими соотношениями, полученными из закона радиоактивного распада :

T_{1/2} = \tau \ln 2 = \frac{\ln 2}{\lambda}.

Поскольку \ln 2 = 0,693\dots, период полураспада примерно на 30,7 % короче, чем среднее время жизни.

На практике период полураспада определяют, измеряя исследуемого препарата через определенные промежутки времени. Учитывая, что активность препарата пропорциональна количеству атомов распадающегося вещества, и воспользовавшись законом радиоактивного распада , можно вычислить период полураспада данного вещества .

Примеры

Пример 1

Если обозначить для данного момента времени число ядер способных к радиоактивному превращению через N, а промежуток времени через t_2-t_1, где t_1 и t_2 - достаточно близкие моменты времени (t_1, и число разлагающихся атомных ядер в этот отрезок времени через n, то n=KN(t_2-t_1). Где коэффициент пропорциональности K = {0,693 \over T_{1/2}} носит название константы распада. Если принять разность (t_2-t_1) равной единице, то есть интервал времени наблюдения равным единице, то K=n/N и, следовательно, константа распада показывает долю от наличного числа атомных ядер, испытывающих распад в единицу времени. Следовательно, распад совершается так, что в единицу времени распадается одна и та же доля от наличного числа атомных ядер, что определяет закон экспоненциального распада.

Величины периодов полураспада для различных изотопов различны; для некоторых, особенно быстро распадающихся, период полураспада может быть равным миллионным долям секунды, а для некоторых изотопов, как уран-238 и торий-232 , он соответственно равен 4,498·10 9 и 1,389·10 10 лет. Легко подсчитать число атомов урана-238, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02·10 23 атомов. Поэтому согласно приведённой выше формуле n=KN(t_2-t_1) найдём число атомов урана, распадающихся в одном килограмме в одну секунду, имея в виду, что в году 365*24*60*60 секунд,

\frac{0,693}{4,498\cdot10^{9}\cdot365\cdot24\cdot60\cdot60} \frac{6,02\cdot10^{23}}{238} \cdot 1000 = 12\cdot10^6.

Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается двенадцать миллионов атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду распадается следующая часть урана:

\frac{12 \cdot 10^6 \cdot 238}{6,02\cdot10^{23}\cdot1000} = 47\cdot10^{-19}.

Таким образом, из наличного количества урана в одну секунду распадается его доля, равная

47 \over 10 000 000 000 000 000 000 .

Обращаясь опять к основному закону радиоактивного распада KN (t 2 - t 1), то есть к тому факту, что из наличного числа атомных ядер в единицу времени распадается всего одна и та же их доля и, имея к тому же ввиду полную независимость атомных ядер в каком-либо веществе друг от друга, можно сказать, что этот закон является статистическим в том смысле, что он не указывает какие именно атомные ядра подвергнутся распаду в данный отрезок времени, а лишь говорит об их числе. Несомненно, этот закон сохраняет силу лишь для того случая, когда наличное число ядер очень велико. Некоторые из атомных ядер распадутся в ближайший момент, в то время как другие ядра будут претерпевать превращения значительно позднее, поэтому когда наличное число радиоактивных атомных ядер сравнительно невелико, закон радиоактивного распада может и не выполняться во всей строгости.

Пример 2

Образец содержит 10 г изотопа плутония Pu-239 с периодом полураспада 24 400 лет. Сколько атомов плутония распадается ежесекундно?

N(t) = N_0 \cdot 2^{-t/T_{1/2}}. \frac{dN}{dt} = -\frac{N_0 \ln 2}{T_{1/2}} \cdot 2^{-t/T_{1/2}} = -\frac{N \ln 2}{T_{1/2}}. N = \frac{m}{\mu}N_A = \frac{10}{239} \cdot 6\cdot 10^{23} = 2.5\cdot 10^{22}. T_{1/2} = 24 400 \cdot 365.24 \cdot 24 \cdot 3600 = 7.7\cdot 10^{11} s. \frac{dN}{dt} = \frac{N \ln 2}{T_{1/2}}

= \frac{2.5\cdot 10^{22} \cdot 0.693}{7.7\cdot 10^{11}}= 2.25\cdot 10^{10} ~s^{-1}.

Мы вычислили мгновенную скорость распада. Количество распавшихся атомов вычислим по формуле

\Delta N = \Delta t \cdot \frac{dN}{dt} = 1 \cdot 2.25\cdot 10^{10} = 2.25\cdot 10^{10}.

Последняя формула действительна только тогда, когда рассматриваемый период времени (в данном случае - 1 секунда) значительно меньше, чем период полураспада. Когда рассматриваемый период времени сравним с периодом полураспада, следует пользоваться формулой

\Delta N = N_0 - N(t) = N_0 \left(1-2^{-t/T_{1/2}} \right).

Эта формула пригодна в любом случае, однако для малых периодов времени требует вычислений с очень большой точностью. Для данной задачи:

\Delta N = N_0 \left(1-2^{-t/T_{1/2}} \right)

2.5\cdot 10^{22} \left(1-2^{-1/7.7 \cdot 10^{11}} \right) = 2.5\cdot 10^{22} \left(1-0.99999999999910 \right) = 2.25\cdot 10^{10}.

Парциальный период полураспада

Если система с периодом полураспада T 1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада . Пусть вероятность распада по i -му каналу (коэффициент ветвления) равна p i . Тогда парциальный период полураспада по i -му каналу равен

T_{1/2}^{(i)} = \frac{T_{1/2}}{p_i}.

Парциальный T_{1/2}^{(i)} имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i -го. Так как по определению p_i \le 1, то T_{1/2}^{(i)} \ge T_{1/2} для любого канала распада.

Стабильность периода полураспада

Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а также радиоуглеродный метод определения возраста биологических останков.

Предположение об изменяемости периода полураспада используется креационистами , а также представителями т. н. «альтернативной науки » для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм , Научный креационизм , Критика эволюционизма , Туринская плащаница).

Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.

Поиск возможных вариаций периодов полураспада радиоактивных изотопов, как в настоящее время, так и в течение миллиардов лет, интересен в связи с гипотезой о вариациях значений фундаментальных констант в физике (постоянной тонкой структуры , константы Ферми и т. д.). Однако тщательные измерения пока не принесли результата - в пределах погрешности эксперимента изменения периодов полураспада не были найдены. Так, было показано, что за 4,6 млрд лет константа α-распада самария-147 изменилась не более чем на 0,75 %, а для β-распада рения-187 изменение за это же время не превышает 0,5 % ; в обоих случаях результаты совместимы с отсутствием таких изменений вообще.

См. также

Напишите отзыв о статье "Период полураспада"

Примечания

Отрывок, характеризующий Период полураспада

Возвратившись со смотра, Кутузов, сопутствуемый австрийским генералом, прошел в свой кабинет и, кликнув адъютанта, приказал подать себе некоторые бумаги, относившиеся до состояния приходивших войск, и письма, полученные от эрцгерцога Фердинанда, начальствовавшего передовою армией. Князь Андрей Болконский с требуемыми бумагами вошел в кабинет главнокомандующего. Перед разложенным на столе планом сидели Кутузов и австрийский член гофкригсрата.
– А… – сказал Кутузов, оглядываясь на Болконского, как будто этим словом приглашая адъютанта подождать, и продолжал по французски начатый разговор.
– Я только говорю одно, генерал, – говорил Кутузов с приятным изяществом выражений и интонации, заставлявшим вслушиваться в каждое неторопливо сказанное слово. Видно было, что Кутузов и сам с удовольствием слушал себя. – Я только одно говорю, генерал, что ежели бы дело зависело от моего личного желания, то воля его величества императора Франца давно была бы исполнена. Я давно уже присоединился бы к эрцгерцогу. И верьте моей чести, что для меня лично передать высшее начальство армией более меня сведущему и искусному генералу, какими так обильна Австрия, и сложить с себя всю эту тяжкую ответственность для меня лично было бы отрадой. Но обстоятельства бывают сильнее нас, генерал.
И Кутузов улыбнулся с таким выражением, как будто он говорил: «Вы имеете полное право не верить мне, и даже мне совершенно всё равно, верите ли вы мне или нет, но вы не имеете повода сказать мне это. И в этом то всё дело».
Австрийский генерал имел недовольный вид, но не мог не в том же тоне отвечать Кутузову.
– Напротив, – сказал он ворчливым и сердитым тоном, так противоречившим лестному значению произносимых слов, – напротив, участие вашего превосходительства в общем деле высоко ценится его величеством; но мы полагаем, что настоящее замедление лишает славные русские войска и их главнокомандующих тех лавров, которые они привыкли пожинать в битвах, – закончил он видимо приготовленную фразу.
Кутузов поклонился, не изменяя улыбки.
– А я так убежден и, основываясь на последнем письме, которым почтил меня его высочество эрцгерцог Фердинанд, предполагаю, что австрийские войска, под начальством столь искусного помощника, каков генерал Мак, теперь уже одержали решительную победу и не нуждаются более в нашей помощи, – сказал Кутузов.
Генерал нахмурился. Хотя и не было положительных известий о поражении австрийцев, но было слишком много обстоятельств, подтверждавших общие невыгодные слухи; и потому предположение Кутузова о победе австрийцев было весьма похоже на насмешку. Но Кутузов кротко улыбался, всё с тем же выражением, которое говорило, что он имеет право предполагать это. Действительно, последнее письмо, полученное им из армии Мака, извещало его о победе и о самом выгодном стратегическом положении армии.
– Дай ка сюда это письмо, – сказал Кутузов, обращаясь к князю Андрею. – Вот изволите видеть. – И Кутузов, с насмешливою улыбкой на концах губ, прочел по немецки австрийскому генералу следующее место из письма эрцгерцога Фердинанда: «Wir haben vollkommen zusammengehaltene Krafte, nahe an 70 000 Mann, um den Feind, wenn er den Lech passirte, angreifen und schlagen zu konnen. Wir konnen, da wir Meister von Ulm sind, den Vortheil, auch von beiden Uferien der Donau Meister zu bleiben, nicht verlieren; mithin auch jeden Augenblick, wenn der Feind den Lech nicht passirte, die Donau ubersetzen, uns auf seine Communikations Linie werfen, die Donau unterhalb repassiren und dem Feinde, wenn er sich gegen unsere treue Allirte mit ganzer Macht wenden wollte, seine Absicht alabald vereitelien. Wir werden auf solche Weise den Zeitpunkt, wo die Kaiserlich Ruseische Armee ausgerustet sein wird, muthig entgegenharren, und sodann leicht gemeinschaftlich die Moglichkeit finden, dem Feinde das Schicksal zuzubereiten, so er verdient». [Мы имеем вполне сосредоточенные силы, около 70 000 человек, так что мы можем атаковать и разбить неприятеля в случае переправы его через Лех. Так как мы уже владеем Ульмом, то мы можем удерживать за собою выгоду командования обоими берегами Дуная, стало быть, ежеминутно, в случае если неприятель не перейдет через Лех, переправиться через Дунай, броситься на его коммуникационную линию, ниже перейти обратно Дунай и неприятелю, если он вздумает обратить всю свою силу на наших верных союзников, не дать исполнить его намерение. Таким образом мы будем бодро ожидать времени, когда императорская российская армия совсем изготовится, и затем вместе легко найдем возможность уготовить неприятелю участь, коей он заслуживает».]
Кутузов тяжело вздохнул, окончив этот период, и внимательно и ласково посмотрел на члена гофкригсрата.
– Но вы знаете, ваше превосходительство, мудрое правило, предписывающее предполагать худшее, – сказал австрийский генерал, видимо желая покончить с шутками и приступить к делу.
Он невольно оглянулся на адъютанта.
– Извините, генерал, – перебил его Кутузов и тоже поворотился к князю Андрею. – Вот что, мой любезный, возьми ты все донесения от наших лазутчиков у Козловского. Вот два письма от графа Ностица, вот письмо от его высочества эрцгерцога Фердинанда, вот еще, – сказал он, подавая ему несколько бумаг. – И из всего этого чистенько, на французском языке, составь mеmorandum, записочку, для видимости всех тех известий, которые мы о действиях австрийской армии имели. Ну, так то, и представь его превосходительству.
Князь Андрей наклонил голову в знак того, что понял с первых слов не только то, что было сказано, но и то, что желал бы сказать ему Кутузов. Он собрал бумаги, и, отдав общий поклон, тихо шагая по ковру, вышел в приемную.
Несмотря на то, что еще не много времени прошло с тех пор, как князь Андрей оставил Россию, он много изменился за это время. В выражении его лица, в движениях, в походке почти не было заметно прежнего притворства, усталости и лени; он имел вид человека, не имеющего времени думать о впечатлении, какое он производит на других, и занятого делом приятным и интересным. Лицо его выражало больше довольства собой и окружающими; улыбка и взгляд его были веселее и привлекательнее.
Кутузов, которого он догнал еще в Польше, принял его очень ласково, обещал ему не забывать его, отличал от других адъютантов, брал с собою в Вену и давал более серьезные поручения. Из Вены Кутузов писал своему старому товарищу, отцу князя Андрея:
«Ваш сын, – писал он, – надежду подает быть офицером, из ряду выходящим по своим занятиям, твердости и исполнительности. Я считаю себя счастливым, имея под рукой такого подчиненного».
В штабе Кутузова, между товарищами сослуживцами и вообще в армии князь Андрей, так же как и в петербургском обществе, имел две совершенно противоположные репутации.
Одни, меньшая часть, признавали князя Андрея чем то особенным от себя и от всех других людей, ожидали от него больших успехов, слушали его, восхищались им и подражали ему; и с этими людьми князь Андрей был прост и приятен. Другие, большинство, не любили князя Андрея, считали его надутым, холодным и неприятным человеком. Но с этими людьми князь Андрей умел поставить себя так, что его уважали и даже боялись.
Выйдя в приемную из кабинета Кутузова, князь Андрей с бумагами подошел к товарищу,дежурному адъютанту Козловскому, который с книгой сидел у окна.
– Ну, что, князь? – спросил Козловский.
– Приказано составить записку, почему нейдем вперед.
– А почему?
Князь Андрей пожал плечами.
– Нет известия от Мака? – спросил Козловский.
– Нет.
– Ежели бы правда, что он разбит, так пришло бы известие.
– Вероятно, – сказал князь Андрей и направился к выходной двери; но в то же время навстречу ему, хлопнув дверью, быстро вошел в приемную высокий, очевидно приезжий, австрийский генерал в сюртуке, с повязанною черным платком головой и с орденом Марии Терезии на шее. Князь Андрей остановился.
– Генерал аншеф Кутузов? – быстро проговорил приезжий генерал с резким немецким выговором, оглядываясь на обе стороны и без остановки проходя к двери кабинета.
– Генерал аншеф занят, – сказал Козловский, торопливо подходя к неизвестному генералу и загораживая ему дорогу от двери. – Как прикажете доложить?
Неизвестный генерал презрительно оглянулся сверху вниз на невысокого ростом Козловского, как будто удивляясь, что его могут не знать.
– Генерал аншеф занят, – спокойно повторил Козловский.
Лицо генерала нахмурилось, губы его дернулись и задрожали. Он вынул записную книжку, быстро начертил что то карандашом, вырвал листок, отдал, быстрыми шагами подошел к окну, бросил свое тело на стул и оглянул бывших в комнате, как будто спрашивая: зачем они на него смотрят? Потом генерал поднял голову, вытянул шею, как будто намереваясь что то сказать, но тотчас же, как будто небрежно начиная напевать про себя, произвел странный звук, который тотчас же пресекся. Дверь кабинета отворилась, и на пороге ее показался Кутузов. Генерал с повязанною головой, как будто убегая от опасности, нагнувшись, большими, быстрыми шагами худых ног подошел к Кутузову.
– Vous voyez le malheureux Mack, [Вы видите несчастного Мака.] – проговорил он сорвавшимся голосом.
Лицо Кутузова, стоявшего в дверях кабинета, несколько мгновений оставалось совершенно неподвижно. Потом, как волна, пробежала по его лицу морщина, лоб разгладился; он почтительно наклонил голову, закрыл глаза, молча пропустил мимо себя Мака и сам за собой затворил дверь.

Полураспад

Пери́од полураспа́да квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) - время T ½ , в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T ½ останется четверть от начального числа частиц, за 3T ½ - одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

Период полураспада, среднее время жизни τ и константа распада λ связаны следующими соотношениями:

.

Поскольку ln2 = 0,693… , период полураспада примерно на 30 % короче, чем время жизни.

Иногда период полураспада называют также полупериодом распада.

Пример

Если обозначить для данного момента времени число ядер способных к радиоактивному превращению через N , а промежуток времени через t 2 - t 1 , где t 1 и t 2 - достаточно близкие моменты времени (t 1 < t 2), и число разлагающихся атомных ядер в этот отрезок времени через n , то n = KN (t 2 - t 1). Где коэффициент пропорциональности K = 0,693/T ½ носит название константы распада. Если принять разность (t 2 - t 1) равной единице, то есть интервал времени наблюдения равным единице, то K = n /N и, следовательно, константа распада показывает долю от наличного числа атомных ядер, испытывающих распад в единицу времени. Следовательно, распад совершается так, что в единицу времени распадается одна и та же доля от наличного числа атомных ядер, что определяет закон экспоненциального распада.

Величины периодов полураспада для различных изотопов различны; для некоторых, особенно быстро распадающихся, период полураспада может быть равным миллионным долям секунды, а для некоторых изотопов, как уран 238 и торий 232, он соответственно равен 4,498*10 9 и 1,389*10 10 лет. Легко подсчитать число атомов урана 238, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02*10 23 атомов. Поэтому согласно приведённой выше формуле n = KN (t 2 - t 1) найдём число атомов урана, распадающихся в одном килограмме в одну секунду, имея ввиду, что в году 365*24*60*60 секунд,

.

Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается двенадцать миллионов атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду распадается следующая часть урана:

.

Таким образом, из наличного количества урана в одну секунду распадается его доля, равная

.

Обращаясь опять к основному закону радиоактивного распада KN (t 2 - t 1), то есть к тому факту, что из наличного числа атомных ядер в единицу времени распадается всего одна и та же их доля и, имея к тому же ввиду полную независимость атомных ядер в каком-либо веществе друг от друга, можно сказать, что этот закон является статистическим в том смысле, что он не указывает какие именно атомные ядра подвергнутся распаду в данный отрезок времени, а лишь говорит об их числе. Несомненно, этот закон сохраняет силу лишь для того случая, когда наличное число ядер очень велико. Некоторые из атомных ядер распадутся в ближайший момент, в то время как другие ядра будут претерпевать превращения значительно позднее, поэтому когда наличное число радиоактивных атомных ядер сравнительно невелико, закон радиоактивного распада может и не выполняться во всей строгости.

Парциальный период полураспада

Если система с периодом полураспада T 1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада . Пусть вероятность распада по i -му каналу (коэффициент ветвления) равна p i . Тогда парциальный период полураспада по i -му каналу равен

Парциальный имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i -го. Так как по определению , то для любого канала распада.

Стабильность периода полураспада

Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а также радиоуглеродный метод определения возраста биологических останков.

Предположение об изменяемости периода полураспада используется креационистами , а также представителями т. н. «альтернативной науки » для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм , Научный креационизм , Критика эволюционизма , Туринская плащаница).

Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.

ПЕРИОД ПОЛУРАСПАДА

ПЕРИОД ПОЛУРАСПАДА , промежуток времени, в течение которого распадается половина данного количества ядер радиоактивного изотопа (которые превращаются в другой элемент или изотоп). Измеряется только период полураспада, так как полного распада не происходит. Период полураспада остается постоянным при любой температуре и давлении, но сильно отличается у разных изотопов. Кислород-20 имеет период полураспада 14 секунд, а уран-234 - около 250 000 лет. Распад радиоактивного изотопа сопровождается испусканием альфа- и бета-частиц. Измеряя интенсивность их выброса, можно исследовать распад. Термин «период полураспада» также относится и к частицам, произвольно распадающимся на новые частицы. Так свободный нейтрон распадается на протон и электрон. См также РАДИОУГЛЕРОДНОЕ ДАТИРОВАНИЕ, РАДИОАКТИВНЫЙ РАСПАД.


Научно-технический энциклопедический словарь .

Смотреть что такое "ПЕРИОД ПОЛУРАСПАДА" в других словарях:

    Промежуток времени, в течение к рого исходное число радиоактивных ядер в среднем уменьшается вдвое. При наличии N0 радиоактивных ядер в момент времени t=0 их число N убывает во времени по закону: N=N0e lt, где l постоянная радиоактивного распада … Физическая энциклопедия

    Время, за которое разлагается половина исходного радиоактивного материала или пестицида. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    ПЕРИОД ПОЛУРАСПАДА - промежуток времени T1/2, в течение которого количество нестабильных ядер уменьшается вдвое. T1/2 = 0,693/λ = 0,693·τ, где λ постоянная радиоактивного распада; τ среднее время жизни радиоактивного ядра. См. также Радиоактивность … Российская энциклопедия по охране труда

    период полураспада - Время, в течение которого активность радиоактивного источника спадает до половинного значения. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]… … Справочник технического переводчика

    Квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) время T½, в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода … Википедия

    Радионуклида (Т1/2), промежуток времени, за который число радиоактивных ядер в среднем уменьшается вдвое. * * * ПЕРИОД ПОЛУРАСПАДА ПЕРИОД ПОЛУРАСПАДА радионуклида (T1/2), промежуток времени, за который первоначальное число радиоактивных атомов… … Энциклопедический словарь

    период полураспада - pusėjimo trukmė statusas T sritis fizika atitikmenys: angl. half life; half life period; half value time vok. Halbwertszeit, f; Rückenhalbwertsdauer, f; Rückenhalbwertzeit, f rus. время полураспада, n; время полуспада, n; период полураспада, m… … Fizikos terminų žodynas

    период полураспада - skilimo pusėjimo trukmė statusas T sritis fizika atitikmenys: angl. decay half time; decay period vok. Halbwertszeit des radioaktiven Zerfalls, f rus. время полураспада, m; период полураспада, m pranc. période de demi vie, f; période de… … Fizikos terminų žodynas

    ПЕРИОД ПОЛУРАСПАДА - (Т0,5) период распада в почве и др. средах. Чаще всего данное значение характеризует потерю веществом пестицидных свойств на 50% … Пестициды и регуляторы роста растений

    период полураспада - pusėjimo trukmė statusas T sritis Standartizacija ir metrologija apibrėžtis Vidutinis laiko tarpas, per kurį skyla pusė visų radioaktyviojo nuklido bandinio atomų. atitikmenys: angl. half life; half life period; half value time vok. Halbperiode,… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Книги

  • Период Полураспада , Котова Е.. Роман-провокация предлагает заглянуть в замочную скважину. А там разворачивается подлинная история русской семьи длиной в сто лет, которая начинается в первый день XX века в идиллическом уюте…

История изучения радиоактивности началась 1 марта 1896 года, когда известный французский ученый случайно обнаружил странность в излучении солей урана. Оказалось, что фотопластинки, расположенные в одном ящике с образцом, засвечены. К этому привело странное, обладающее высокой проникающей способностью излучение, которым обладал уран. Это свойство обнаружилось у самых тяжелых элементов, завершающих периодическую таблицу. Ему дали название "радиоактивность".

Вводим характеристики радиоактивности

Данный процесс - самопроизвольное превращение атома изотопа элемента в иной изотоп с одновременным выделением элементарных частиц (электронов, ядер атомов гелия). Превращение атомов оказалось самопроизвольным, не требующим поглощения энергии извне. Основной величиной, характеризующей процесс выделения энергии в ходе называют активность.

Активностью радиоактивного образца называют вероятное количество распадов данного образца за единицу времени. В интернациональной) единицей измерения ее назван беккерель (Бк). В 1 беккерель принята активность такого образца, в котором в среднем происходит 1 распад в секунду.

А=λN, где λ- постоянная распада, N - число активных атомов в образце.

Выделяют α, β, γ-распады. Соответствующие уравнения называют правилами смещения:

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

Замечено, что она с течением времени меняется. Хотя отдельные элементы демонстрируют удивительное постоянство степени излучения, существуют вещества, активность которых уменьшается в несколько раз за достаточно короткий промежуток времени. Удивительное разнообразие! Возможно ли найти закономерность в этих процессах?

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название "период полураспада". В чем смысл введения этого понятия?

полураспада?

Представляется, что за время, равное периоду, ровно половина всех активных атомов данного образца распадается. Но означает ли это, что за время в два периода полураспада все активные атомы полностью распадутся? Совсем нет. Через определенный момент в образце остается половина радиоактивных элементов, через такой же промежуток времени из оставшихся атомов распадается еще половина, и так далее. При этом излучение сохраняется длительное время, значительно превышающее период полураспада. Значит, активные атомы сохраняются в образце независимо от излучения

Период полураспада - это величина, зависящая исключительно от свойств данного вещества. Значение величины определено для многих известных радиоактивных изотопов.

Таблица: «Полупериод распада отдельных изотопов»

Название

Обозначение

Вид распада

Период полураспада

0,001 секунд

бета, гамма

альфа, гамма

альфа, гамма

4,5 млрд лет

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Пример определения для изотопа

Пусть число активных элементов исследуемого изотопа в данный момент времени равно N, интервал времени, в течение которого ведется наблюдение t 2 - t 1 , где моменты начала и окончания наблюдения достаточно близки. Допустим, что n - число атомов, распавшихся в данный временной интервал, тогда n = KN(t 2 - t 1).

В данном выражении K = 0,693/T½ - коэффициент пропорциональности, называющийся константой распада. T½ - период полураспада изотопа.

Примем временной интервал за единицу. При этом K = n/N указывает долю от присутствующих ядер изотопа, распадающихся в единицу времени.

Зная величину константы распада, можно определить и полупериод распада: T½ = 0,693/K.

Отсюда следует, что за единицу времени распадается не определенное количество активных атомов, а определенная их доля.

Закон радиоактивного распада (ЗРР)

Период полураспада положен в основу ЗРР. Закономерность выведена Фредерико Содди и Эрнестом Резерфордом на основе результатов экспериментальных исследований в 1903 году. Удивительно, что многократные измерения, выполненные при помощи приборов, далеких от совершенства, в условиях начала ХХ столетия, привели к точному и обоснованному результату. Он стал основой теории радиоактивности. Выведем математическую запись закона радиоактивного распада.

Пусть N 0 - количество активных атомов в данный момент времени. По истечении интервала времени t нераспавшимися останутся N элементов.

К моменту времени, равному периоду полураспада, останется ровно половина активных элементов: N=N 0 /2.

По прошествии еще одного периода полураспада в образце остаются: N=N 0 /4=N 0 /2 2 активных атомов.

По прошествии времени, равному еще одному периоду полураспада, образец сохранит только: N=N 0 /8=N 0 /2 3 .

К моменту времени, когда пройдет n периодов полураспада, в образце останется N=N 0 /2 n активных частиц. В этом выражении n=t/T½: отношение времени исследования к периоду полураспада.

ЗРР имеет несколько иное математическое выражение, более удобное в решении задач: N=N 0 2 - t/ T½ .

Закономерность позволяет определить, помимо периода полураспада, число атомов активного изотопа, нераспавшихся в данный момент времени. Зная число атомов образца в начале наблюдения, через некоторое время можно определить время жизни данного препарата.

Определить период полураспада формула закона радиоактивного распада помогает лишь при наличии определенных параметров: числа активных изотопов в образце, что узнать достаточно сложно.

Следствия закона

Записать формулу ЗРР можно, используя понятия активности и массы атомов препарата.

Активность пропорциональна числу радиоактивных атомов: A=A 0 .2 -t/T . В этой формуле А 0 - активность образца в начальный момент времени, А - активность по истечении t секунд, Т - период полураспада.

Масса вещества может быть использована в закономерности: m=m 0 .2 -t/T

В течение любых равных промежутков времени распадается абсолютно одинаковая доля радиоактивных атомов, имеющихся в наличии в данном препарате.

Границы применимости закона

Закон во всех смыслах является статистическим, определяя процессы, протекающие в микромире. Понятно, что период полураспада радиоактивных элементов - величина статистическая. Вероятностный характер событий в атомных ядрах предполагает, что произвольное ядро может развалиться в любой момент. Предсказать событие невозможно, можно лишь определить его вероятность в данный момент времени. Как следствие, период полураспада не имеет смысла:

  • для отдельного атома;
  • для образца минимальной массы.

Время жизни атома

Существование атома в его первоначальном состоянии может длиться секунду, а может и миллионы лет. Говорить о времени жизни данной частицы также не приходится. Введя величину, равную среднему значению времени жизни атомов, можно вести разговор о существовании атомов радиоактивного изотопа, последствиях радиоактивного распада. Период полураспада ядра атома зависит от свойств данного атома и не зависит от других величин.

Можно ли решить проблему: как найти период полураспада, зная среднее время жизни?

Определить период полураспада формула связи среднего времени жизни атома и постоянной распада помогает не меньше.

τ= T 1/2 /ln2= T 1/2 /0,693=1/ λ.

В этой записи τ - среднее время жизни, λ - постоянная распада.

Использование периода полураспада

Применение ЗРР для определения возраста отдельных образцов получило широкое распространение в исследованиях конца ХХ века. Точность определения возраста ископаемых артефактов настолько возросла, что может дать представление о времени жизни за тысячелетия до нашей эры.

Ископаемых органических образцов основан на изменении активности углерода-14 (радиоактивного изотопа углерода), присутствующего во всех организмах. Он попадает в живой организм в процессе обмена веществ и содержится в нем в определенной концентрации. После смерти обмен веществ с окружающей средой прекращается. Концентрация радиоактивного углерода падает вследствие естественного распада, активность уменьшается пропорционально.

При наличии такого значения, как период полураспада, формула закона радиоактивного распада помогает определить время с момента прекращения жизнедеятельности организма.

Цепочки радиоактивного превращения

Исследования радиоактивности проводились в лабораторных условиях. Удивительная способность радиоактивных элементов сохранять активность в течение часов, суток и даже лет не могла не вызывать удивления у физиков начала ХХ столетия. Исследования, к примеру, тория, сопровождались неожиданным результатом: в закрытой ампуле активность его была значительной. При малейшем дуновении она падала. Вывод оказался прост: превращение тория сопровождается выделением радона (газ). Все элементы в процессе радиоактивности превращаются в совершенно иное вещество, отличающееся и физическими, и химическими свойствами. Это вещество, в свою очередь, также нестабильно. В настоящее время известно три ряда аналогичных превращений.

Знания о подобных превращениях крайне важны при определении времени недоступности зон, зараженных в процессе атомных и ядерных исследований или катастроф. Период полураспада плутония - в зависимости от его изотопа - лежит в интервале от 86 лет (Pu 238) до 80 млн лет (Pu 244). Концентрация каждого изотопа дает представление о периоде обеззараживания территории.

Самый дорогой металл

Известно, что в наше время есть металлы значительно более дорогие, чем золото, серебро и платина. К ним относится и плутоний. Интересно, что в природе созданный в процессе эволюции плутоний не встречается. Большинство элементов получены в лабораторных условиях. Эксплуатация плутония-239 в ядерных реакторах дала возможность ему стать чрезвычайно популярным в наши дни. Получение достаточного для использования в реакторах количества данного изотопа делает его практически бесценным.

Плутоний-239 получается в естественных условиях как следствие цепочки превращений урана-239 в нептуний-239 (период полураспада - 56 часов). Аналогичная цепочка позволяет накопить плутоний в ядерных реакторах. Скорость появления необходимого количества превосходит естественную в миллиарды раз.

Применение в энергетике

Можно много говорить о недостатках атомной энергетики и о «странностях» человечества, которое практически любое открытие использует для уничтожения себе подобных. Открытие плутония-239, который способен принимать участие в позволило использовать его в качестве источника мирной энергии. Уран-235, являющийся аналогом плутония, встречается на Земле крайне редко, выделить его из значительно сложнее, чем получить плутоний.

Возраст Земли

Радиоизотопный анализ изотопов радиоактивных элементов дает более точное представление о времени жизни того или иного образца.

Использование цепочки превращений "уран - торий", содержащихся в земной коре, дает возможность определить возраст нашей планеты. Процентное соотношение этих элементов в среднем по всей земной коре лежит в основе этого метода. По последним данным, возраст Земли составляет 4,6 миллиарда лет.

Определение периода полураспада радиоактивного долгоживущего изотопа калия

Цель работы: Изучение явления радиоактивности. Определение периода полураспада Т 1/2 ядер радиоактивного изотопа К-40 (калий-40).

Оборудование:

Измерительная установка;

Мерный образец, содержащий известную массу хлористого калия (KCl);

Эталонный препарат (мера активности) с известной активностью К-40.

Теоретическая часть

В настоящее время известно большое количество изотопов всех химических элементов, ядра которых могут самопроизвольно превращаться друг в друга. В процессе превращений ядро испускает один или несколько видов так называемых ионизирующих частиц - альфа-(α), бета-(β) и других, а также гамма-квантов (γ). Такое явление называется радиоактивным распадом ядра.

Радиоактивный распад носит вероятностный характер и зависит только от характеристик распадающегося и образующегося ядер. Внешние факторы (нагревание, давление, влажность и др.) на скорость радиоактивного распада воздействия не оказывают. Радиоактивность изотопов практически не зависит также от того, находятся они в чистом виде или входят в состав каких-либо химических соединений. Радиоактивный распад является процессом стохастическим. Каждое ядро распадается независимо от других ядер. Нельзя сказать, когда конкретно распадется данное радиоактивное ядро, но для отдельного ядра можно указать вероятность его распада за определенное время.

Самопроизвольный распад радиоактивных ядер происходит в соответствии с законом кинетики радиоактивного распада, согласно которому число ядер dN(t), распадающихся за бесконечно малый промежуток времени dt , пропорционально числу нестабильных ядер, имеющихся в момент времени t в данном источнике излучения (мерном образце):

В формуле (1) коэффициент пропорциональности λ называется постоянной распада ядра. Ее физический смысл – вероятность распада отдельно взятого нестабильного ядра в единицу времени. Другими словами - для источника излучения, содержащего в рассматриваемый момент большое количество нестабильных ядер N(t) , постоянная распада показывает долю ядер, распадающихся в данном источнике за малый промежуток времени dt . Постоянная распада – размерная величина. Ее размерность в системе СИ – с -1 .

Величина А(t ) в формуле (1) сама по себе имеет важное значение. Она является основной количественной характеристикой данного образца как источника излучения и называется его активностью . Физический смысл активности источника – количество нестабильных ядер, распадающихся в данном источнике излучения в единицу времени. Единица измерения активности в системе СИ – Беккерель(Бк) – соответствует распаду одного ядра в секунду. В специализированной литературе встречается внесистемная единица измерения активности – Кюри (Ки) . 1 Ки ≈ 3.7·10 10 Бк.

Выражение (1) – это запись закона кинетики радиоактивного распада в дифференциальной форме. На практике иногда удобнее применять другой (интегральный) вид закона радиоактивного распада. Решая дифференциальное уравнение (1), получим:

, (2)

где N (0) – количество нестабильных ядер в образце в начальный момент времени (t = 0); N (t ) – среднее количество нестабильных ядер в любой момент времени t >0.

Таким образом, число нестабильных ядер в любом источнике излучения уменьшается со временем, в среднем, по экспоненциальному закону. На рисунке 1 представлена кривая изменения среднего числа ядер во времени, происходящего по закону радиоактивного распада. Этот закон может быть применен только к большому числу радиоактивных ядер. При небольшом числе распадающихся ядер наблюдаются значительные статистические колебания около среднего значения N (t ).

Рисунок 1. – Кривая распада радионуклида.

Умножив обе части (2) на константу λ и учитывая, что N (t )· λ = A (t ), получим закон изменения активности источника излучения с течением времени

. (3)

В качестве интегральной временной характеристики радионуклида часто применяют величину, называемую его периодом полураспада T 1/2 . Период полураспада - это интервал времени, на протяжении которого число ядер данного радионуклида в источнике уменьшается, в среднем, в два раза (см. рисунок 1). Из выражения (2) находим:

откуда получаем соотношение между периодом полураспада радионуклида T 1/2 и его постоянной распада

Подставив в формулу (4) значение λ , выраженное и формулы (1) получаем выражение, связывающее период полураспада с активностью мерного образца A и количеством нестабильных ядер N К-40 радионуклида
, входящего в состав этого образца

. (5)

Выражение (5) является основной рабочей формулой данного задания. Из нее следует, что, посчитав количество ядер радионуклида
в рабочем мерном образце и определив активность К-40 в образце, можно будет найти период полураспада долгоживущего радионуклида К-40, выполнив тем самым задание лабораторной работы.

Отметим важный момент. Учтем, что по условиям задания заранее известно, что период полураспада T 1/2 радионуклида
намного больше времени наблюденияΔ T за мерным образцом в рамках данной лабораторной работы T / T 1/2 <<1) . Следовательно, при выполнении данного задания, можно не учитывать изменение активности образца и количества ядер К-40 в образце за счет радиоактивного распада и считать их постоянными величинами:

Определение количества ядер К-40 в мерном образце.

Известно, что природный химический элемент калий состоит из трех изотопов – К-39, К-40 и К-41. Один из этих изотопов, а именно радионуклид
, массовая доля которого в природном калии составляет 0,0119 %(относительная распространенность η =0,000119) , является нестабильным.

Число атомов N К-40 (соответственно, и ядер) радионуклида
в мерной пробе определяется следующим образом.

Полное число N K атомов природного калия в мерной пробе, содержащей m граммов (указывается преподавателем) хлористого калия, находится из соотношения

,

где М KCl = 74,5 г/моль – молярная масса KCl;

N A = 6,02·10 23 моль -1 - постоянная Авогадро.

Следовательно, с учетом относительной распространенности, число атомов (ядер) радионуклида
в мерной пробе будет определяться соотношением

. (6)

Определение активности радионуклида
в мерном образце.

Известно, что ядра радионуклида К-40 могут испытывать два вида ядерных превращений:

С вероятностью ν β = 0,89 ядро К-40 превращается в ядро Ca-40, испуская при этом -частицу и антинейтрино (бета-распад):

С вероятностью ν γ =0,11 ядро захватывает электрон с ближайшей К-оболочки, превращаясь в ядро Ar-40 и испуская при этом нейтрино (электронный захват или К-захват):

Рожденное ядро аргона находится в возбужденном состоянии и практически мгновенно переходит в основное состояние, испуская при этом переходе γ – квант с энергией 1461 кэВ:

.

Вероятности выхода ν β и ν γ называются относительным выходом β-частиц и γ – квантов на один распад ядра , соответственно. На рисунке 2 приведена схема распада К-40, иллюстрирующая вышеизложенное.

Рисунок 2. – Схема распада радионуклида К-40.

Возникающие при радиоактивном распаде ядер ионизирующие частицы могут быть зарегистрированы специальной аппаратурой. В настоящей работе применяется измерительная установка, регистрирующая β-частицы, сопровождающие распад ядер радионуклида К-40, входящих в состав мерного образца.

Блок-схема измерительной установки приведена на рисунке 3.

Рисунок 3. – Блок-схема измерительной установки.

1 – кювета с мерным образцом KCl ;

2 – счетчик Гейгера-Мюллера;

3 – высоковольтный блок;

4 – формирователь импульсов;

5 – счетчик импульсов;

6 – таймер.

Рассмотрим процесс регистрации бета-частиц, образующихся в мерном образце (источнике излучения), измерительной установкой.

Неизвестную активность радионуклида К-40 в мерном образце обозначим A x . Это означает, что каждую секунду в образце распадается, в среднем, A x ядер радионуклида К-40;

Регистрация излучения проводится в течение некоторого времени работы установки t изм . Очевидно, что за это время в образце распадутся, в среднем, A x ·t изм ядер;

С учетом относительного выхода бета-частиц на один распад ядра, количество бета-частиц, рожденных в образце за время работы установки, будет равно A x ·t изм ·ν β ;

Поскольку источник имеет конечные размеры, часть бета-частиц поглотится материалом самого источника. Вероятность Q поглощения бета-частицы, рожденной в источнике, материалом самого источника называют коэффициентом самопоглощения излучения. Отсюда следует, что из источника за все время измерения во всех направлениях (в телесный угол 4π) вылетит, в среднем, A x ·t изм ·ν β ·(1- Q ) бета-частиц;

Через детектор (счетчик Гейгера – Мюллера) пролетает только малая доля G всех вышедших из источника бета-частиц, зависящая от размеров и взаимного расположения образца и детектора. Остальные частицы пролетят мимо детектора. Поправка G называется геометрическим фактором системы «детектор – образец». Следовательно, полное количество бета-частиц, попавших за время работы установки из образца в рабочий объем детектора будет равно A x ·t изм ·ν β ·(1- Q G ;

Вследствие особенности работы детекторов ионизирующего излучения любых типов (в том числе и детекторов Гейгера-Мюллера), лишь некоторая доля ε (называемая эффективностью регистрации детектора) частиц, пролетевших через детектор, инициирует электрический импульс на его выходе. Остальные частицы детектор «не замечает». Данные электрические импульсы обрабатываются электронной схемой измерительной установки и регистрируются ее счетным устройством. Таким образом, за время работы установки счетное устройство зарегистрирует «полезных» событий (импульсов), обусловленных распадом ядер К-40 в мерной пробе;

Одновременно с бета-частицами из мерного образца -
- измерительная установка зарегистрирует и определенное количество -- так называемых фоновых частиц, обусловленных естественной радиоактивностью окружающих строительных конструкций, конструкционных материалов, космического излучения и т.д.

Таким образом, полное количество событий n X , зарегистрированных пересчетным устройством измерительной установки при измерении мерного образца с неизвестной активностью А Х в течение времени t изм , можно представить в виде

Точный учет поправок Q , G и ε , входящих в формулу (7), в общем случае весьма сложен. Поэтому на практике часто пользуются относительным методом измерения активности . Реализация такого метода возможна при наличии эталонного источника радиоактивного излучения (образцовой меры активности) с известной активностью А Э , имеющего такую же форму и размеры, содержащего тот же радионуклид, что и исследуемый образец. В этом случае все поправочные коэффициенты - ν β , Q , G , ε - будут одинаковы для исследуемого и эталонного препаратов.

Для образцовой меры активности можно записать выражение, аналогичное выражению (7) для исследуемого образца

Если выбрать время измерения исследуемого и эталонного образцов одинаковым, то, выразив произведение
из формулы (8) и подставив это выражение в формулу (7), получим выражение для практического определения активности исследуемого образца А Х

, Бк , (9)

где А Э – активность образцовой меры, Бк;

n X – количество событий, зарегистрированных при измерении исследуемого образца;

n Э – количество событий, зарегистрированных при измерении образцовой меры;

n Ф – количество событий, зарегистрированных при измерении фона.

Порядок выполнения лабораторной работы

1. Включите установку, установите время измерения (не менее 3 мин) и дайте ей «прогреться» в течение 15 -20 минут.

2. Проведите измерение фона не менее 5 раз. Результаты каждого (i – го) измерения -

3. Получите у преподавателя мерный образец. Уточните у преподавателя количество хлористого калия в мерном образце. По формуле (6) рассчитайте количество ядер радионуклида К-40 в мерном образце.

4. Установите мерный образец под рабочее окно детектора и проведите измерение образца не менее 5 раз. Результаты каждого измерения - -занесите в рабочую таблицу.

5. Получите у преподавателя образцовую меру, уточните значение в ней активности радионуклида К-40.

6. Установите образцовую меру под рабочее окно детектора и проведите ее измерение не менее 5 раз. Результаты каждого измерения -- занесите в рабочую таблицу 1.

7. По формуле (9) для каждой i-й строки рассчитайте величину активности мерной пробы. Результаты расчетов - - занесите в рабочую таблицу 1.

8. По формуле (5) для каждой i-й строки рабочей таблицы рассчитайте значение периода полураспада -
- радионуклида К-40.

9. Определите среднеарифметическое значение периода полураспада

и оценку среднеквадратического отклонения

,

где L - размер выборки (число измерений, например, L = 5).

Полученное в результате выполнения лабораторной работы значение периода полураспада радионуклида К-40 записать в виде:

, лет,

где t p , L -1 – соответствующий коэффициент Стьюдента (см. таблицу 2), а

- среднеквадратичная погрешность среднеарифметического.

10. Используя полученное значение периода полураспада
оцените значения величин постоянной распадаλ и среднего времени жизни ядра τ = 1/λ радионуклида
.

11. Сравните полученные результаты со справочными значениями.

Таблица 1. Рабочая таблица результатов.

Таблица 2. Значения коэффициента Стьюдента для различной доверительной вероятности p и числа степеней свободы (L -1):

L-1

P

Контрольные вопросы

1. Что такое изотопы химического элемента?

2. Запишите закон радиоактивного распада в дифференциальной и интегральной формах.

3. Что такое активность радионуклидного источника ионизирующего излучения? Какие имеются единицы измерения активности?

4. По какому закону активность источника изменяется с течением времени?

5. Что такое постоянная распада, период полураспада и среднее время жизни ядра радионуклида? Единицы их измерения. Запишите выражения, связывающие эти величины.

6. Определите периоды полураспада радионуклидов Rn-222 и Ra-226, если их постоянные распада, соответственно, равны 2,110 -6 с -1 и 1,3510 -11 с -1 .

7. При измерении образца, содержащего короткоживущий радионуклид, в течение 1 мин было зарегистрировано 250 импульсов, а спустя 1 час после начала первого измерения 90 импульсов за 1 мин. Определите постоянную распада и период полураспада радионуклида, если фоном измерительной установки можно пренебречь.

8. Объясните схему распада радионуклида К-40. Что такое относительный выход ионизирующих частиц?

9. Объясните физический смысл понятий: эффективность регистрации ядерных частиц детектором; геометрический фактор измерительной установки; коэффициент самопоглощения излучения.

10. Изложите суть относительного метода определения активности источника ионизирующего излучения.

11. Каково значение периода полураспада радионуклида, если за 5 часов активность его препарата уменьшилась в 16 раз?

12. Можно ли определить активность образца, содержащего К-40, измеряя интенсивность только гамма-излучения?

13. Какой вид имеет энергетический спектр β + - излучения и β - - излучения?

14. Можно ли определить активность образца, измеряя интенсивность его нейтринного (антинейтринного) излучения?

15. Какой характер имеет энергетический спектр гамма-излучения К-40?

16. От каких факторов зависит среднеквадратическая погрешность определения периода полураспада К-40 в данной работе?

Пример решения задачи

Условие. Определите значение постоянной радиоактивного распада λ и период полураспада Т 1/2 радионуклида 239 Pu, если в препарате 239 Pu 3 O 8 массой m = 3,16 микрограмма за время t = 100 с происходит Q = 6,78·10 5 распадов ядер.

Решение.

    Активность препарата A = Q/t = 6,78·10 5 /100 = 6,78·10 3 , расп/с (Бк).

    Масса 239 Pu в препарате

где A моль – соответствующие молярные массы.

    Число ядер Pu-239 в препарате

где N A – число Авогадро.

    Постоянная распада λ = A / N 239 = 6,78·10 3 /6,75·10 15 = 1,005·10 -12 , с -1 .

    Период полураспада

T 1/2 = ln2/λ = 6,91·10 11 c.

Рекомедуемая литература.

1. Абрамов, Александр Иванович. Основы экспериментальных методов ядерной физики: учебное пособие для студ. вузов / А.И. Абрамов, Ю.А, Казанский, Е.С. Матусевич.- 3-е изд., перераб. и доп. - М. : Энергоатомиздат, 1985 .- 487 с.

2. Алиев, Рамиз Автандилович. Радиоактивность: [учебное пособие для студ. вузов, обуч. по направлению ВПО 020100 (магистр химии) и специальности ВПО 020201 - "Фундамент. и приклад. химия"] / Р.А. Алиев, С.Н. Калмыков.- Санкт-Петербург; Москва; Краснодар: Лань, 2013 .- 301 с.

3. Мухин, Константин Никтфорович. Экспериментальная ядерная физика: учебник: [в 3 т.] / К.Н. Мухин.- Санкт-Петербург; Москва; Краснодар: Лань, 2009.

4. Коробков, Виктор Иванович. Методы приготовления препаратов и обработка результатов измерений радиоактивности / В.И. Коробков, В.Б. Лукьянов.- М. : Атомиздат, 1973 .- 216 с.