Решение квадратичных неравенств. Калькулятор онлайн

Определение квадратного неравенства

Замечание 1

Квадратным неравенство называется т.к. переменная возведена в квадрат. Также квадратные неравенства называют неравенствами второй степени .

Пример 1

Пример .

$7x^2-18x+3 0$, $11z^2+8 \le 0$ – квадратные неравенства.

Как видно из примера, не все элементы неравенства вида $ax^2+bx+c > 0$ присутствуют.

Например, в неравенстве $\frac{5}{11} y^2+\sqrt{11} y>0$ нет свободного члена (слагаемое $с$), а в неравенстве $11z^2+8 \le 0$ нет слагаемого с коэффициентом $b$. Такие неравенства также являются квадратными, но их еще называют неполными квадратными неравенствами . Это лишь означает, что коэффициенты $b$ или $с$ равны нулю.

Методы решения квадратных неравенств

При решении квадратных неравенств используют такие основные методы:

  • графический;
  • метод интервалов;
  • выделения квадрата двучлена.

Графический способ

Замечание 2

Графический способ решения квадратных неравенств $ax^2+bx+c > 0$ (или со знаком $

Данные промежутки и являются решением квадратного неравенства .

Метод интервалов

Замечание 3

Метод интервалов решения квадратных неравенств вида $ax^2+bx+c > 0$ (знак неравенства может быть также $

Решениями квадратного неравенства со знаком $«»$ – положительные промежутки, со знаками $«≤»$ и $«≥»$ – отрицательные и положительные промежутки (соответственно), включая точки, которые отвечают нулям трехчлена.

Выделение квадрата двучлена

Метод решения квадратного неравенства выделением квадрата двучлена заключается в переходе к равносильному неравенству вида $(x-n)^2 > m$ (или со знаком $

Неравенства, которые сводятся к квадратным

Замечание 4

Зачастую при решении неравенств их нужно привести к квадратным неравенствам вида $ax^2+bx+c > 0$ (знак неравенства может быть также $ неравенствами, которые сводятся к квадратным.

Замечание 5

Самым простым способом приведения неравенств к квадратным может быть перестановка в исходном неравенстве слагаемых или перенос их, например, из правой части в левую.

Например, при переносе всех слагаемых неравенства $7x > 6-3x^2$ из правой части в левую получается квадратное неравенство вида $3x^2+7x-6 > 0$.

Если переставить в левой части неравенства $1,5y-2+5,3x^2 \ge 0$ слагаемые в порядке убывания степени переменной $у$, то это приведет к равносильному квадратному неравенству вида $5,3x^2+1,5y-2 \ge 0$.

При решении рациональных неравенств часто используют приведение их к квадратным неравенствам. При этом необходимо перенести все слагаемые в левую часть и преобразовать получившееся выражение к виду квадратного трехчлена.

Пример 2

Пример .

Привести неравенство $7 \cdot (x+0,5) \cdot x > (3+4x)^2-10x^2+10$ к квадратному.

Решение .

Перенесем все слагаемые в левую часть неравенства:

$7 \cdot (x+0,5) \cdot x-(3+4x)^2+10x^2-10 > 0$.

Используя формулы сокращенного умножения и раскрывая скобки, упростим выражение в левой части неравенства:

$7x^2+3,5x-9-24x-16x^2+10x^2-10 > 0$;

$x^2-21,5x-19 > 0$.

Ответ : $x^2-21,5x-19 > 0$.

Универсальным методом решения неравенств по праву считается метод интервалов. Именно его проще всего использовать для решения квадратных неравенств с одной переменной. В этом материале мы рассмотрим все аспекты применения метода интервалов для решения квадратных неравенств. Для облегчения усвоения материала мы рассмотрим большое количество примеров разной степени сложности.

Yandex.RTB R-A-339285-1

Алгоритм применения метода интервалов

Рассмотрим алгоритм применения метода интервалов в адаптированном варианте, который пригоден для решения квадратных неравенств. Именно с таким вариантом метода интервалов знакомят учеников на уроках алгебры. Не будем усложнять задачу и мы.

Перейдем собственно к алгоритму.

У нас есть квадратный трехчлен a · x 2 + b · x + c из левой части квадратного неравенства. Находим нули из этого трехчлена.

В системе координат изображаем координатную прямую. Отмечаем на ней корни. Для удобства можем ввести разные способы обозначения точек для строгих и нестрогих неравенств. Давайте договоримся, что «пустыми» точками мы будем отмечать координаты при решении строгого неравенства, а обычными точками - нестрогого. Отметив точки, мы получаем на координатной оси несколько промежутков.

Если на первом шаге мы нашли нули, то определяем знаки значений трехчлена для каждого из полученных промежутков. Если нули мы не получили, то производим это действие для всей числовой прямой. Отмечаем промежутки знаками « + » или « - ».

Дополнительно мы будем вводить штриховку в тех случаях, когда будем решать неравенства со знаками > или ≥ и < или ≤ . В первом случае штриховка будет наноситься над промежутками, отмеченными « + », во втором над участками, отмеченными « - ».

Отметив знаки значений трехчлена и нанеся штриховку над отрезками, мы получаем геометрический образ некоторого числового множества, которое фактически является решением неравенства. Нам остается лишь записать ответ.

Остановимся подробнее на третьем шаге алгоритма, который предполагает определение знака промежутка. Существует несколько подходов определения знаков. Рассмотрим их по порядку, начав с наиболее точного, хотя и не самого быстрого. Этот метод предполагает вычисление значений трехчлена в нескольких точках полученных промежутков.

Пример 1

Для примера возьмем трехчлен x 2 + 4 · x − 5 .

Корни этого трехчлена 1 и - 5 разбивают координатную ось на три промежутка (− ∞ , − 5) , (− 5 , 1) и (1 , + ∞) .

Начнем с промежутка (1 , + ∞) . Для того, чтобы упростить себе задачу, примем х = 2 . Получаем 2 2 + 4 · 2 − 5 = 7 .

7 – положительное число. Это значит, что значения данного квадратного трехчлена на интервале (1 , + ∞) положительные и его можно обозначить знаком « + ».

Для определения знака промежутка (− 5 , 1) примем x = 0 . Имеем 0 2 + 4 · 0 − 5 = − 5 . Ставим над интервалом знак « - ».

Для промежутка (− ∞ , − 5) возьмем x = − 6 , получаем (− 6) 2 + 4 · (− 6) − 5 = 7 . Отмечаем этот интервал знаком « + ».

Намного быстрее определить знаки можно с учетом следующих фактов.

При положительном дискриминанте квадратный трехчлен с двумя корнями дает чередование знаков его значений на промежутках, на которые разбивается числовая ось корнями этого трехчлена. Это значит, что нам вовсе не обязательно определять знаки для каждого из интервалов. Достаточно провести вычисления для одного и проставить знаки для остальных, учитывая принцип чередования.

При желании, можно и вовсе обойтись без вычислений, сделав выводы о знаках по значению старшего коэффициента. Если a > 0 , то мы получаем последовательность знаков + , − , + , а если a < 0 – то − , + , − .

У квадратных трехчленов с одним корнем, когда дискриминант равен нулю, мы получаем два промежутка на координатной оси с одинаковыми знаками. Это значит, что мы определяем знак для одного из промежутков и для второго ставим такой же.

Здесь также применим метод определения знака на основе значения коэффициента a: если a > 0 , то будет + , + , а если a < 0 , то − , − .

Если квадратный трехчлен не имеет корней, то знаки его значений для всей координатной прямой совпадают как со знаком старшего коэффициента a , так и со знаком свободного члена c .

Например, если мы возьмем квадратный трехчлен − 4 · x 2 − 7 , он не имеет корней (его дискриминант отрицательный). Коэффициент при x 2 есть отрицательное число − 4 , и свободный член − 7 тоже отрицателен. Это значит, что на промежутке (− ∞ , + ∞) его значения отрицательны.

Рассмотрим примеры решения квадратных неравенств с использованием рассмотренного выше алгоритма.

Пример 2

Решите неравенство 8 · x 2 − 4 · x − 1 ≥ 0 .

Решение

Используем для решения неравенства метод интервалов. Для этого найдем корни квадратного трехчлена 8 · x 2 − 4 · x − 1 . В связи с тем, что коэффициент при х четный, нам будет удобнее вычислить не дискриминант, а четвертую часть дискриминанта: D " = (− 2) 2 − 8 · (− 1) = 12 .

Дискриминант больше нуля. Это позволяет нам найти два корня квадратного трехчлена: x 1 = 2 - 12 9 , x 1 = 1 - 3 4 и x 2 = 2 + 12 8 , x 2 = 1 + 3 4 . Отметим эти значения на числовой прямой. Так как уравнение нестрогое, то на графике мы используем обычные точки.

Теперь по методу интервалов определяем знаки трех полученных интервалов. Коэффициент при x 2 равен 8 , то есть, положителен, следовательно, последовательность знаков будет + , − , + .

Так как мы решаем неравенство со знаком ≥ , то изображаем штриховку над промежутками со знаками плюс:

Запишем аналитически числовое множество по полученному графическому изображению. Мы можем сделать это двумя способами:

Ответ: (- ∞ ; 1 - 3 4 ] ∪ [ 1 + 3 4 , + ∞) или x ≤ 1 - 3 4 , x ≥ 1 + 3 4 .

Пример 3

Выполните решение квадратного неравенства - 1 7 · x 2 + 2 · x - 7 < 0 методом интервалов.

Решение

Для начала найдем корни квадратного трехчлена из левой части неравенства:

D " = 1 2 - - 1 7 · - 7 = 0 x 0 = - 1 - 1 7 x 0 = 7

Это строгое неравенство, поэтому на графике используем «пустую» точку. С координатой 7 .

Теперь нам нужно определить знаки на полученных промежутках (− ∞ , 7) и (7 , + ∞) . Так как дискриминант квадратного трехчлена равен нулю, а старший коэффициент отрицательный, то мы проставляем знаки − , − :

Так как мы решаем неравенство со знаком < , то изображаем штриховку над интервалами со знаками минус:

В данном случае решениями являются оба промежутка (− ∞ , 7) , (7 , + ∞) .

Ответ: (− ∞ , 7) ∪ (7 , + ∞) или в другой записи x ≠ 7 .

Пример 4

Имеет ли квадратное неравенство x 2 + x + 7 < 0 решения?

Решение

Найдем корни квадратного трехчлена из левой части неравенства. Для этого найдем дискриминант: D = 1 2 − 4 · 1 · 7 = 1 − 28 = − 27 . Дискриминант меньше нуля, значит, действительных корней нет.

Графическое изображение будет иметь вид числовой прямой без отмеченных на ней точек.

Определим знак значений квадратного трехчлена. При D < 0 он совпадает со знаком коэффициента при x 2 , то есть, со знаком числа 1 , оно положительное, следовательно, имеем знак + :

Штриховку мы могли бы нанести в данном случае над промежутками со знаком « - ». Но таких промежутков у нас нет. Следовательно, чертеж сохраняет вот такой вид:

В результате вычислений мы получили пустое множество. Это значит, что данное квадратное неравенство решений не имеет.

Ответ: Нет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Понятие математического неравенства возникло в глубокой древности. Это произошло тогда, когда у первобытного человека появилась потребность при счёте и действиях с различными предметами сравнивать их количество и величину. Начиная с античных времён неравенствами пользовались в своих рассуждениях Архимед, Евклид и другие прославленные деятели науки: математики, астрономы, конструкторы и философы.

Но они, как правило, применяли в своих работах словесную терминологию. Впервые современные знаки для обозначения понятий «больше» и «меньше» в том виде, каком их сегодня знает каждый школьник, придумали и применили на практике в Англии. Оказал такую услугу потомкам математик Томас Гарриот. А случилось это около четырёх столетий назад.

Известно множество видов неравенств. Среди них простые, содержащие одну, две и больше переменных, квадратные, дробные, сложные соотношения и даже представленные системой выражений. А понять, как решать неравенства, лучше всего на различных примерах.

Не опоздать на поезд

Для начала представим себе, что житель сельской местности спешит на железнодорожную станцию, которая находится на расстоянии 20 км от его деревни. Чтобы не опоздать на поезд, отходящий в 11 часов, он должен вовремя выйти из дома. В котором часу это необходимо сделать, если скорость его движения составляет 5 км/ч? Решение этой практической задачи сводится к выполнению условий выражения: 5 (11 - Х) ≥ 20, где Х - время отправления.

Это понятно, ведь расстояние, которое необходимо преодолеть селянину до станции равно скорости движения, умноженной на количество часов в пути. Прийти раньше человек может, но вот опоздать ему никак нельзя. Зная, как решать неравенства, и применив свои умения на практике, в итоге получим Х ≤ 7, что и является ответом. Это значит, что селянину следует отправиться на железнодорожную станцию в семь утра или несколько ранее.

Числовые промежутки на координатной прямой

Теперь выясним, как отобразить описываемые соотношения на Полученное выше неравенство не является строгим. Оно означает, что переменная может принимать значения меньше 7, а может быть равным этому числу. Приведём другие примеры. Для этого внимательно рассмотрим четыре рисунка, представленных ниже.

На первом из них можно увидеть графическое изображение промежутка [-7; 7]. Он состоит из множества чисел, размещённых на координатной прямой и находящихся между -7 и 7, включая границы. При этом точки на графике изображаются в виде закрашенных кругов, а запись промежутка производится с использованием

Второй рисунок является графическим представлением строгого неравенства. В данной случае пограничные числа -7 и 7, показанные выколотыми (не закрашенными) точками, не включаются в указанное множество. А запись самого промежутка производится в круглых скобках следующим образом: (-7; 7).

То есть, выяснив, как решать неравенстватакого типа, и получив подобный ответ, можно заключить, что он состоит из чисел, находящихся между рассматриваемыми границами, кроме -7 и 7. Следующие два случая необходимо оценивать аналогичным образом. На третьем рисунке даются изображения промежутков (-∞; -7] U – скобки квадратные.

*Это касается не только квадратных неравенств. Квадратная скобка означает, что сама граница интервала включена в решение.

На примерах вы это увидите. Давайте разберём несколько, чтобы снять все вопросы по этому поводу. В теории алгоритм может показаться несколько сложным, на самом деле всё просто.

ПРИМЕР 1: Решить x 2 – 60 x +500 ≤ 0

Решаем квадратное уравнение x 2 –60 x +500=0

D = b 2 –4 ac = (–60) 2 –4∙1∙500 = 3600–2000 = 1600

Находим корни:


Подставляем коэффициент a

x 2 –60 x +500 = (х–50)(х–10)

Записываем неравенство в виде (х–50)(х–10) ≤ 0

Корни уравнения делят числовую ось на интервалы. Покажем их на числовой прямой:

Мы получили три интервала (–∞;10), (10;50) и (50;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение (х–50)(х–10) произвольных значений их каждого полученного интервала и смотрим соответствие полученного «знака» знаку в неравенстве (х–50)(х–10) ≤ 0 :

при х=2 (х–50)(х–10) = 384 > 0 неверно

при х=20 (х–50)(х–10) = –300 < 0 верно

при х=60 (х–50)(х–10) = 500 > 0 неверно

Решением будет являться интервал .

При всех значениях х из этого интервала неравенство будет верным.

*Обратите внимание, что мы поставили квадратные скобки.

При х = 10 и х = 50 неравенство также будет верно, то есть границы входят в решение.

Ответ: x∊

Ещё раз:

— Границы интервала ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак ≤ или ≥ (нестрогое неравенство). При этом на эскизе принято полученные корни отображать ЗАШТРИШОВАННЫМ кружком.

— Границы интервала НЕ ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак < или > (строгое неравенство). При этом на эскизе принято корень отображать НЕЗАШТРИХОВАННЫМ кружком.

ПРИМЕР 2: Решить x 2 + 4 x –21 > 0

Решаем квадратное уравнение x 2 + 4 x –21 = 0

D = b 2 –4 ac = 4 2 –4∙1∙(–21) =16+84 = 100

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:

x 2 + 4 x –21 = (х–3)(х+7)

Записываем неравенство в виде (х–3)(х+7) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим их на числовой прямой:

*Неравенство нестрогое, поэтому обозначения корней НЕзаштрихованы. Получили три интервала (–∞;–7), (–7;3) и (3;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение (х–3)(х+7) произвольных значений их этих интервалов и смотрим соответствие неравенству (х–3)(х+7)> 0 :

при х= –10 (–10–3)(–10 +7) = 39 > 0 верно

при х= 0 (0–3)(0 +7) = –21 < 0 неверно

при х=10 (10–3)(10 +7) = 119 > 0 верно


Решением будут являться два интервала (–∞;–7) и (3;+∞). При всех значениях х из этих интервалов неравенство будет верным.

*Обратите внимание, что мы поставили круглые скобки. При х = 3 и х = –7 неравенство будет неверным – границы не входят в решение.

Ответ: x∊(–∞;–7) U (3;+∞)

ПРИМЕР 3: Решить x 2 –9 x –20 > 0

Решаем квадратное уравнение x 2 –9 x –20 = 0.

a = –1 b = –9 c = –20

D = b 2 –4 ac = (–9) 2 –4∙(–1)∙ (–20) =81–80 = 1.

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:

x 2 –9 x –20 =–(х–(–5))(х–(–4))= –(х+5)(х+4)

Записываем неравенство в виде –(х+5)(х+4) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим на числовой прямой:

*Неравенство строгое, поэтому обозначения корней незаштрихованы. Получили три интервала (–∞;–5), (–5; –4) и (–4;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение –(х+5)(х+4) произвольных значений их этих интервалов и смотрим соответствие неравенству –(х+5)(х+4)>0 :

при х= –10 – (–10+5)(–10 +4) = –30 < 0 неверно

при х= –4,5 – (–4,5+5)(–4,5+4) = 0,25 > 0 верно

при х= 0 – (0+5)(0 +4) = –20 < 0 неверно

Решением будут являться интервал (–5;–4). При всех значениях «х» принадлежащих ему неравенство будет верным.

*Обратите внимание, что границы не входят в решение. При х = –5 и х = –4 неравенство будет неверным.

ЗАМЕЧАНИЕ!

При решении квадратного уравнения у нас может получится один корень или корней не будет вовсе, тогда при использовании данного метода вслепую могут возникнуть затруднения в определении решения.

Небольшой итог! Метод хорош и использовать его удобно, особенно если вы знакомы с квадратичной функцией и знаете свойства её графика. Если нет, то прошу ознакомиться, приступим к следующему разделу.

Использование графика квадратичной функции. Рекомендую!

Квадратичная это функция вида:

Её графиком является парабола, ветви параболы направлены вверх, либо вниз:


График может быть расположен следующим образом: может пересекать ось х в двух точках, может касаться её в одной точке (вершиной), может не пересекать. Об этом подробнее в дальнейшем.

Теперь рассмотрим этот подход на примере. Весь процесс решения состоит из трёх этапов. Решим неравенство x 2 +2 x –8 >0.

Первый этап

Решаем уравнение x 2 +2 x –8=0.

D = b 2 –4 ac = 2 2 –4∙1∙(–8) = 4+32 = 36

Находим корни:

Получили х 1 =2 и х 2 = – 4.

Второй этап

Строим параболу у= x 2 +2 x –8 по точкам:


Точки – 4 и 2 это точки пересечения параболы и оси ох. Всё просто! Что сделали? Мы решили квадратное уравнение x 2 +2 x –8=0. Посмотрите его запись в таком виде:

0 = x 2 +2x – 8

Ноль у нас это значение «у». При у = 0, мы получаем абсциссы точек пересечения параболы с осью ох. Можно сказать, что нулевое значение «у» это есть ось ох.

Теперь посмотрите при каких значениях х выражение x 2 +2 x – 8 больше (или меньше) нуля? По графику параболы это определить несложно, как говорится, всё на виду:

1. При х < – 4 ветвь параболы лежит выше оси ох. То есть при указанных х трёхчлен x 2 +2 x –8 будет положительным.

2. При –4 < х < 2 график ниже оси ох. При этих х трёхчлен x 2 +2 x –8 будет отрицательным.

3. При х > 2 ветвь параболы лежит выше оси ох. При указанных х трёхчлен x 2 +2 x –8 будет положительным.

Третий этап

По параболе нам сразу видно, при каких х выражение x 2 +2 x –8 больше нуля, равно нулю, меньше нуля. В этом заключается суть третьего этапа решения, а именно увидеть и определить положительные и отрицательные области на рисунке. Сопоставляем полученный результат с исходным неравенством и записываем ответ. В нашем примере необходимо определить все значения х при которых выражение x 2 +2 x –8 больше нуля. Мы это сделали во втором этапе.

Остаётся записать ответ.

Ответ: x∊(–∞;–4) U (2;∞).

Подведём итог: вычислив в первом шаге корни уравнения, мы можем отметить полученные точки на оси ох (это точки пересечения параболы с осью ох). Далее схематично строим параболу и уже можем увидеть решение. Почему схематично? Математически точный график нам не нужен. Да и представьте, например, если корни получатся 10 и 1500, попробуй-ка построй точный график на листе в клетку с таким разбегом значений. Возникает вопрос! Ну получили мы корни, ну отметили их на оси ох, а зарисовать расположение самой парабола – ветвями вверх или вниз? Тут всё просто! Коэффициент при х 2 вам подскажет:

— если он больше нуля, то ветви параболы направлены вверх.

— если меньше нуля, то ветви параболы направлены вниз.

В нашем примере он равен единице, то есть положителен.

*Примечание! Если в неравенстве будет стоять знак нестрогий, то есть ≤ или ≥, то корни на числовой прямой следует заштриховать, этим условно обозначается, что сама граница интервала входит в решение неравенства. В данном случае корни не заштрихованы (выколоты), так как неравенство у нас строгое (стоит знак «>»). При чем в ответе, в данном случае, ставятся круглые скобки, а не квадратные (границы не входят в решение).

Написано много, кого-то запутал, наверное. Но если вы решите минимум 5 неравенств с использованием парабол, то восхищению вашему предела не будет. Всё просто!

Итак, кратко:

1. Записываем неравенство, приводим к стандартному.

2. Записываем квадратное уравнение и решаем его.

3. Рисуем ось ох, отмечаем полученные корни, схематично рисуем параболу, ветвями вверх, если коэффициент при х 2 положителен, или ветвями вниз, если он отрицателен.

4. Определяем визуально положительные или отрицательные области и записываем ответ по исходному неравенству.

Рассмотрим примеры.

ПРИМЕР 1: Решить x 2 –15 x +50 > 0

Первый этап.

Решаем квадратное уравнение x 2 –15 x +50=0

D = b 2 –4 ac = (–15) 2 –4∙1∙50 = 225–200 = 25

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас строгое, то заштриховывать их не будем. Схематично строим параболу, расположена она ветвями вверх, так как коэффициент при х 2 положительный:

Третий этап.

Определяем визуально положительные и отрицательные области, здесь мы их отметили разными цветами для наглядности, можно этого и не делать.

Записываем ответ.

Ответ: x∊(–∞;5) U (10;∞).

*Знак U обозначает объёдинение решение. Образно можно выразиться так, решением является «этот» И « ещё этот» интервал.

ПРИМЕР 2: Решить x 2 + x +20 ≤ 0

Первый этап.

Решаем квадратное уравнение x 2 + x +20=0

D = b 2 –4 ac = 1 2 –4∙(–1)∙20 = 1+80 = 81

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас нестрогое, то заштрихуем обозначения корней. Схематично строим параболу, расположена она ветвями вниз, так как коэффициент при х 2 отрицательный (он равен –1):

Третий этап.

Определяем визуально положительные и отрицательные области. Сопоставляем с исходным неравенством (знак у нас ≤ 0). Неравенство будет верно при х ≤ – 4 и х ≥ 5.

Записываем ответ.

Ответ: x∊(–∞;–4] U }